|
In the mathematical description of general relativity, the Boyer–Lindquist coordinates are a generalization of the coordinates used for the metric of a Schwarzschild black hole that can be used to express the metric of a Kerr black hole. The coordinate transformation from Boyer–Lindquist coordinates , to cartesian coordinates x, y, z is given by :: :: :: The line element for a black hole with mass , angular momentum , and charge in Boyer–Lindquist coordinates and natural units () is :: where :: :: ::, the angular momentum per unit mass of the black hole Note that in natural units , , and all have units of length. This line element describes the Kerr–Newman metric. The Hamiltonian for test particle motion in Kerr spacetime was separable in Boyer–Lindquist coordinates. Using Hamilton-Jacobi theory one can derive a fourth constant of the motion known as Carter's constant. ==References == *Boyer, R. H. and Lindquist, R. W. ''Maximal Analytic Extension of the Kerr Metric''. J. Math. Phys. 8, 265-281, 1967. *Shapiro, S. L. and Teukolsky, S. A. ''Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects''. New York: Wiley, p. 357, 1983. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Boyer–Lindquist coordinates」の詳細全文を読む スポンサード リンク
|